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                                  ABSTRACT KEYWORDS
 

Today, companies need to make use of appropriate patterns such as 

supply chain management system to gain and preserve their positions 

in competitive world-wide market. Supply chain is a large scale 

network consists of suppliers, manufacturers, warehouses, 

wholesalers, retailers and final customers which are in coordination 

with each other in order to transform products from raw materials 

into finished goods with optimal placement of inventory within the 

supply chain and minimizing operating costs in the face of demand 

fluctuations. Model Predictive Control (MPC) is a widely used means 

on supply chains, but  in presence of long delays and sudden 

disturbance changes (customer demand changes) , tuning of MPCs 

requires a time consuming trial-and-error procedure and system 

robustness will be highly decreased. In this paper, a control scheme is 

proposed to increase supply chain robustness. Due to the large scale 

characteristic of supply chain, the model is divided into different 

subsystems and is controlled by distributed model predictive 

controllers. Each subsystem model has been changed in which an 

integrated is imbedded, input and output changes are highly penalized 

in cost functions and Laguerre orthonormal basis functions are added 

in MPC's structures and it will be shown that the supply chain 

robustness will be increased toward high changes in customer 

demand and toward long constant delays in distribution centres, also 

Results will be compared to previous conventional MPCs applied on 

supply chains by other authors. 
              © 2014 IUST Publication, IJIEPR, Vol. 25, No. 4, All Rights Reserved.  

 

 
 

 
 

 

 

1- 1
 Introduction

Historically companies leveraged a variety of factors to 

differentiate themselves from their competition, 

including product features, price, quality, product 
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availability and customer service. In today’s dynamic 

market, companies can no longer exploit the same 

drivers, or must exploit them differently, in order to 

remain competitive. The supply chain is the best 

answer to above problems. A supply chain consists of 

all parties involved, directly or indirectly in fulfilling a 

customer request. The supply chain not only includes 

the manufacturer and suppliers, but also contains 

transporters, warehouses, wholesalers, retailers and 
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customers to transform products from raw materials 

into finished goods and deliver those goods into the 

hands of the end customers as soon as possible. So the 

supply chain is a large scale system with different 

subsystems that are highly coupled with each other.  

There are some important issues that should be 

considered in the control of supply chains, such as 

safety stock control, inventory control, and bullwhip 

effect control. Safety stock is a term used by supply 

chain managers to describe a level of extra stock or 

inventory which should be maintained in warehouses 

to prevent risk of stock-outs due to uncertainties in 

supply and demand.  Each stage or subsystem in a 

supply chain has specific safety storage level. 

Companies today must be fast and nimble enough to 

react quickly to changes in customer demand and do it 

with little inventory. Inventory control is concerned 

with minimizing the total cost of inventory. The 

purpose of inventory control is full filling any customer 

demand with lowest level of inventory (safety stock 

levels) and reducing stocks-out without excessive 

inventories.Another term in the supply chains is 

bullwhip effect. The bullwhip effect is an observed 

phenomenon in forecast-driven distribution channels. It 

refers to a trend of larger and larger swings in 

inventory in response to changes in customer demand 

(Fig .1) .Our goal is to keep it as minimum as possible. 

 

 
Fig.1. Bullwhip effect rate 

 

According to [1], the bullwhip effect in each subsystem 

is obtained by following formula 
Var(inventory level)

BE(t)
Var(customer demand)

  
(1) 

Where Var(.) is the variance in time t. 

Different methods and control approaches are applies 

on supply chains. For example, reference number [2] 

has proposed a mathematical method for managing 

inventories in a dual channel supply chain, a fuzzy 

approach is proposed for multi-objective supplier 

selection in [3]. Model Predictive controller (MPC) is 

a widely used means to deal with large multivariable 

constraint control issues in industry. In supply chain 

studies there are a lot of papers using MPC to improve 

supply chain performance.Kapsiotis was the first to 

apply MPC to an inventory management problem [4]; 

Tzafestas et al., considered a generalized production 

planning problem that includes both 

production/inventory and marketing decisions [5]; 

Perea-Lopez et al. employed MPC to manage a multi-

product, multi-echelon production and distribution 

network with lead times [6]; Dunbar and Desa applied 

a recently developed distributed /decentralized 

implementation of  MPC to the problem of dynamic 

supply chain management problem, reminiscent of the 

classic MIT “Beer Game” [7]; Sarmveis has written a 

review for dynamic modeling and control of supply 

chain systems[6]; Miranbeigi uses a move suppression 

term in supply chain cost functions in order to increase 

robustness toward changes in customer demands [9]; 

Jie Li and Mian Peng have written a paper to solve 

inventory fluctuation caused by uncertain time delay 

in a multi-level supply chain [10]; Grasso presents a 

MPC strategy enriched with soft control techniques as 

neural networks and fuzzy logic to MPC self-tuning 

capability in a water drinks supply chain [11].  

As it is clear, MPC is a widely used means on supply 

chains, but in presence of long delays and sudden 

disturbance changes (customer demand changes), 

tuning of MPCs requires a time consuming trial-and-

error procedure and system robustness will be highly 

decreased. In this paper, a control scheme is proposed 

to increase supply chain robustness. Due to the large 

scale characteristic of supply chain, the model is 

divided into different subsystems and is controlled by 

distributed model predictive controllers. Each 

subsystem model has been changed in which an 

integrated is imbedded, input and output changes are 

highly penalized in cost functions and Leaguered 

orthonormal basis functions are added in MPC's 

structures and it will be shown that the supply chain 

robustness will be increased toward high changes in 

customer demand and toward long constant delays in 

distribution centers, also results will be compared to 

previous conventional MPCs applied on supply chains 

by other authors. 

 
2. Supply Chain Modeling and Control 

Strategy 

2-1. Modeling 
Assume a supply chain with suppliers(S), manufactures 

(M), Wholesalers (W), Retailers (R) and final 

customers(C) as the nodes of the system. For each node 

k, there is an upstream node denoted by k' which can 

supply node k and a downstream node denoted by k" 

which can be supplied by k. Inventory control 

strategies are made to avoid uncertain fluctuations. 

Each node has its own desired inventory level and 

inventory fluctuations should perform in certain small 

domain around their desired levels even though 

demands don’t obey any specific structure. Each 

subsystem model is as follows.  

 

k
k ',k k,k"k ',k

k
k,k"k,k"

d( (t))
(t ) d (t)

dt

d(BO (t))
(t) d (t)

dt

k R,W,M

inv
p

p

  

 

 



 

 

(2) 
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Where k ',kP (t)  is the transferred product through (k',k) 

channel and is considered as manipulated variable, 

k ',k is transportation delay time through channel k' and 

k , k,k"d is actual number of delivered products from 

node k to node k" and is considered as a manipulated 

variable , k,k"p is demand rate sent from node k" to 

node k and is considered as disturbance , kinv (t) and 

kBO (t) are inventory level and backorder rate in node 

k which are considered as system outputs [9]." k,k"p  

and k ',k  are the arbitrary parameters in our model . 

The control goal in our paper is to increase supply 

chain robustness through any kind of delay ( k ',k ) and 

any kind of demand ( k,k"p ). In order to use MPC, the 

above continues model should be discretized as 

follows: 

k,k"k ',kk k k ',k

k k,k"k,k"

(t 1) (t) (t-1- ) d (t)

BO (t 1) (t) d (t)k

pinv inv

BO (t) p

L   

  
 

 

(3) 

 
2-2. Control Strategy 
In large scale applications, such as power systems, 

water distribution systems, traffic systems, 

manufacturing systems, and economic systems, such a 

centralized control scheme may not suitable or even 

possible for technical or commercial reasons, it is 

useful to have distributed or decentralized control 

schemes. Each controller will be optimized by its own 

policy and its own cost function and will sent its 

optimal signal controls as disturbances (demands) to 

the next coupled controllers. The structure of 

distributed controllers is illustrated in Fig.2. 

 
Fig.2.Method 1, Decentralized conventional MPCs. 

 

In this paper, conventional MPCs in Fig.2 are replaced 

with orthonormal based MPCs in order to increase 

supply chain robustness Fig.3. 

 
Fig.3. Method 2, Decentralized orthonormal based 

MPCs. 

 

Some advantages of method 2 than method 1 are:                         

1-Simple tuning.                                                                            

2- Using orthonormal functions in method 2 reduces 

number of parameters used for description of future 

control trajectory, so computational volume decreases. 

3- Using augmented model in method 2 and penalizing 

input and output changes causes smoother responses. 
 

2-3. Cost Functions 
In this paper decentralized formulation will be used. So 

instead of a centralized cost function, three individual 

cost functions will be used. Each cost function will do 

its own optimization in order to achieve optimal orders 

for its coupled controllers. The cost functions are in 

quadratic forms. Each of them includes two least 

square parts. First part is to penalize outputs and the 

second part is to penalize inputs.   k R ,W ,M The 

cost functions and constraints are obtained by   

k ',k2 2k k
out in

P ,d k,k"kk ',k k ',k

P (t)inv (t) Tinv
W ( ) W ( )

d (t)BO (t) 0
min

  
   

   

Subject to  

 0 0 
max

knv t in , tvi 

 

        

(4) 

Where Win>0 and Wout> 0 are weighting matrices. 

 
3. Discrete-time MPC using Laguerre functions 

3-1. Control Signal Trajectory and Prediction 
The z-transfer function of Leaguers function is given as 

[12]  
1

k k 1 1

z
(z) (z)

1 az



 


  


 (5) 

With 
2

1 1

1

1 z



 


 .where 0 ≤ < 1 is called the scaling 

factor and is selected by the user. Letting 1l (k)  to 

Nl (k) denote the inverse z-transforms of 1(z)  to 2(z) . 

This set of discrete-time Laguerre functions are 

expressed in a vector form as 
T

1 2 NL(k) l (k) l (k) l (k)     
(6) 

According to (5), the set of discrete-time Laguerre 

functions in vector (6) satisfies the following equation 

lL(k 1) A L(k)   (7) 

Where lA is ( N N ) and can be expressed as 

2

2 2 3 3

0 0 0

0 0

0

0

1 1
N N N N

( ) ( )
    

 
 

 
 
   
 

    
 
 
         

 

 

 

(8) 

Where 2
1   and the initial condition is given by 

T 2 2 3 N 1 N 1
L(0) 1 ( 1)

        
 

 (9) 

Assume that a discrete time model has the form as 

m m m m

m m

x (k 1) A x (k) B u(k)

y(k) C x (k)

  


 (10) 

We need to change the model to suit our design 
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purpose in which an integrator is embedded. The 

augmented model can be expressed as follows 

according to [13]  
T

m mm m

m m

m

m m

m
m

x (k 1) x (k)A 0

y(k 1) y(k)C A I

B
u(k)

C B

x (k)
y(k) 0 1

y(k)

      
     

      

 
  
 

 
     

 

 

 

 

(11) 

Where u u(k) u(k 1)    and
m m mx (k) x (k) x (k 1)   

denote the difference of the control input and the state 

variable respectively. By using discrete-time Laguerre 

functions, 
iu(k k)  can be approximated by 

following equation 
N

T

i j j
j 1

u(k k) c (k)l (k) L(k)


      (12) 

Where 1 2 Nc c c    . The state prediction has 

the form as follows: 
m

i i i

m 1
m i 1 T

i 0

x(k m | k ) A x(k )

A BL(i)


 



  


 (13) 

Where (13) is obtained by replacing T
L(i)   instead of

iu(k k)  . Similarly the prediction for the plant 

output can be written as 
m

i i i

m 1
m i 1 T

i 0

y(k m | k ) CA x(k )

CA BL(i)


 



  


 

 
(14) 

The cost function is in the following quadratic form 
Np

T
i i i i

m 1

i i i i

N 1p
T

i i i i
m 0

J (r(k m | k ) y(k m | k ))

Q (r(k m | k ) y(k m | k ))

U(k m | k ) R U(k m | k )







    

    

    





 

 

 

(15) 

The weighting matrices are Q >0 and R> 0. By 

substituting (12) into the cost function (15) we obtain  
Np

T
i i i i

m 1

i i i i

T

J (r(k m | k ) y(k m | k ))

Q (r(k m | k ) y(k m | k ))

R



    

    

 



 
(16) 

The objective is to minimize the cost function (16) to 

find the optimal coefficient vector   in the presence of 

input and states constraints 

3-2. The Unconstrained Solution 
Without constraints, by substituting (14) into (16), 

according to [12] the optimal solution of the cost 

function (16), is found as following equation 
1

ix(k )


     (17) 

Where
m 1

T m i 1 T

i 0

(m) A BL(i)


 



   ,

N Tp

m 1( (m)Q (m) R)     and 
N mp

m 1( (m)QA )  
 

 

3-3. The Inequality Constraints 
Model predictive control has the ability to handle hard 

constraints in the design. With parameterization of the 

control signal trajectory, we can choose the locations 

of the future constraints. This could potentially reduce 

the number of constraints within the prediction horizon 

[12]. 
 

3-3-1. Constraints on the Amplitudes of the 

Control Signal 

Suppose that the limits on the control signals are lowu

and highu . Noting that the increment of the control 

signal is
k 1

i 0

u(k) u(i)




  , then the inequality constraint 

for the future time k, k=1, 2. . . is expressed in 

following inequality as [12] 
k 1

low i high
i 0

u ( L(i)) u(k 1) u




     
(18) 

 

3-3-2. Constraints on the Output Variables 
Suppose that the constraints on the process output 

variables are given by 
low

y and high
y . Then the 

inequality constraint for the future time instant m is in 

following inequality as [12] 
m T

low i highy CA x(k ) (m) y     (19) 

 

4. Simulation 
A multi echelon supply chain is used in 

simulation examples. The supply chain network 

consists of supplier, manufacturer, wholesaler, retailer 

and final customer. Only a single type of product will 

be distributed along the chain and the purpose of our 

inventory control isn't zero safety stock; safety storage 

is to keep customer demand satisfaction, set as 100 

units. Whole simulation time is 80 time unit (day). 

Prediction horizon and control horizon of 30 time 

periods are selected. Inventory set points, initial 

inventory levels, maximum storage capacity at every 

node are reported in Table 1. 
 

Tab.1. Supply Chain Data 

Data Retaile

r 
Warehous

e 
Manufactur

e 

Initial Inventory 

level 
20 30 40 

Desired 

Inventory 

80 100 150 

Maximum 

storage capacity 

300 300 300 

 

As it said before , customer demand and transportation 

delays are the arbitrary parameters in our supply chain 

model and the control goal is to increase supply chain 

robustness through a sort of delay  and any kind of 

customer demand, so two kind of customer demand is 

considered, first type of demand is a random pulsatory 

demand with small domain changes between 0 and 50 
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units and the second demand is a random pulsatory 

demand with high and sudden domain changes 

between 0 and 600 units and Also two kind of short 

and long transportation time delays are considered.  

In this part two control methods is applied. In first 

method, distributed regular model predictive 

controllers are applied and in second method the 

supply chain model is changed in which an integrator 

is embedded , input and output changes are highly 

penalized in cost functions and also Orthonormal basis 

functions are used in MPCs’ structure. Laguerre 

parameters are chosen as a= [0.9 0.9], N= [40 40]. 

It will be shown that if suddenly demand changed, the 

first method cannot predict this changes and has poor 

efficiency, Also in presence of long delays, tuning of 

conventional MPCs (first method) requires a time 

consuming trial-and-error procedure and retuning is 

needed for any changes, but our proposed method 

(method 2) is robust through sudden demand changes 

and toward any short or long transportation delays and 

there is no need for retuning. The input and output 

tuning weight matrices in each echelon in both 

methods are given in Table 2 and table 3. 

 

Tab.2. Input and output weights in first method 

Delay type 

 

 

Demand type 

Delay type 1: Short 

transportation delays 

S,W M,W W,R R,CL L L L

1 1 2 1

   

  

 

Delay type 2: Long 

transportation delays 

S,W M,W W,R R,CL L L L

6 5 8 7

   

  

 

 

Demand type 1: 
in outR R

in outW W

in outM M

in outS S

W 0.5 0.5 , W 0.3 0.09

W 0.5 0.5 , W 0.3 0.09

W 0.5 0.5 , W 0.3 0.09

W 0.5 0.5 , W 0.3 1.5

             

             

             

             

 

in outR R

in outW W

in outM M

in outS S

W 30 20 , W 10 5

W 15 10 , W 20 15

W 15 25 , W 20 15

W 20 20 , W 30 20

             

             

             

             

 

 

Demand type 2: 
in outR R

in outW W

in outM M

in outS S

W 0.3 0.5 , W 1.5 1.2

W 0.4 0.5 , W 1.1 0.8

W 0.5 0.5 , W 1.3 0.9

W 0.5 0.5 , W 1.3 1.5

             

             

             

             

 -

in outR R

in outW W

in outM M

in outS S

W 35 30 , W 15 10

W 25 20 , W 20 20

W 35 30 , W 25 20

W 25 20 , W 30 25

             

             

             

             

 

 

Tab.3. Input and output weights in second method 

Delay type 

Demand type 

Short and Long delay (Delay type 1 and Delay type 2) 

Demand type 1 and 
2  

in out in outR R W W

in out in outM M S S

W 0.08 5 , W 0.03 0.03 , W 0.1 0.61 , W 2 2 ,

W 0.1 0.61 , W 1.3 0.9 , W 0.1 0.5 , W 2 2

                              

                              

 

 

In the following, proposed methods should be 

implemented to check whether they have an acceptable 

performance in critical issues such as safety stock 

control, inventory control and bullwhip effect control. 

Also the approaches must provide optimal orders for 

upstream nodes and optimal number of delivered 

products (satisfied orders) to downstream nodes. 

Simulation results for each combination of customer 

demand and delays {(demand1 ,delay short), 

(demand1,delayLong ), (demand2 ,delay short), 

(demand2,delayLong ) } are illustrated in figures 4-11 

and both methods are compared with each other. 

When demand is type 1 and distribution delay is type 1 

(delay short), results are shown in Figs 4.a, 5.a and 6.a. 

However Method 2 performs better than method 1, but 

both applied methods have good performances; It 

means that, inventory levels in all echelons are almost 

near safety stock level (desired reference), (Fig4.a), 

Each upstream node satisfies its downstream node 

demand perfectly (fig6.a), and Also Bullwhip effect 

rate which is calculated according to formula (1), is 

under control , Fig (5.a). But the question is how is the 

performance of method 1 in face of sudden demand 

fluctuations and in the presence of long distribution 

delays?  

However much effort has been done to tune MPCs in 

method 1, but as illustrated in Fig (4.b), fig (5.b) and 

Fig (7), in the presence of long delays, method 1 loses 

its efficiency; It means that there are lots of overshoots 

in output responses, each node cannot satisfy its 

downstream node's demand precisely and bullwhip 

effect rates are increased. 

Also when there is sudden changes in customer 

demand (demand type 3) , method 1 cannot control the 
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supply chain, Fig (8a , 9a , 10) and method 1 

performance becomes poorer when distribution delay 

time increases ,  Fig (8b , 9b,  11) 

As it is clear, in all figures, method 2 plays much better 

performance than method 1 and method 2 is always 

robust toward any demand changes and any delay. 

All the results are summarized in Table 4. 

 

Tab.4. Results summarization 
Delay type 

Demand type 
Delay type 1 

(Short Delay) 
Delay type 2 

(Long Delay) 

Demand type 1 

(pulsatory demand with 

Small domain changes) 

Method 1   √ 

Method 2     √ 

Method 1   × 

Method 2    √ 

Demand type 2 

(pulsatory demand with 

high and sudden domain 

changes) 

Method 1     × 
Method 2    √ 

Method 1     × 
Method 2    √ 

 

 

  
Fig.4. Method 2 plays better performance than method 1 on inventory control and safety stock control, Fig (a), 

especially when there is delay type 2, Fig (b). 

 
Fig.5. Method 2 plays better performance than method 1 on bullwhip effect rate reduction, Fig (a), especially 

when there is delay type 2, Fig (b) 
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Fig.6. When demand is type 1 and delay is type 1, both methods have good performances in demand satisfaction, 

Fig (a), Fig (b); however method 2 has better performance than method 1, Fig (b). 
 

 
Fig.7. When there is delay type 2, method 2 has poor performance in demand satisfaction , Fig(a) , but method 2 

has good performance and keeps its robustness through delay type 2 , Fig(b). 

  
Fig.8. When demand is type 2 , Method 2 plays much better performance than method 1 on inventory control 

and safety stock control (a), especially when there is delay type 2 (b). 
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Fig.9. When demand is type 2 , Method 2  plays much better performance than method 1 on bullwhip effect rate 

reduction (a) , especially when there is delay type 2 (b) 

 

 
Fig.10. When demand is type 2, Method 2 in Fig (b) , plays better performance on downstream demand 

satisfaction than method 1 , Fig (a). 

 
Fig.11. When demand is type 2 and delay is type 2, Method 2, Fig (b), plays much better performance on 

downstream demand satisfaction than method 1, Fig (a). 

 

4. Conclusion 
A framework for supply chain management 

based on distributed Model Predictive Controllers 

using orthonormal Laguerre functions was presented 

and also the supply chain model changed to an 

augmented model in which an integrator was 

imbedded and input and output changes were highly 

penalized in cost functions. The simulation results, 

demonstrated that the proposed control approach is 

robust through any customer demand and 
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transportation time delay and  despite the demand 

fluctuations, in contrast to conventional MPCs without 

using orthonormal basis functions, the bullwhip effect 

rate decreased, better reference tracking and 

disturbance rejection achieved and smoothness of the 

supply chain process in all echelons and subsystems 

kept. 
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